

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

GATE Computer Science Engineering Coaching by IGC Algorithm Assignment – 1

Q1. T(n) = $4T(n/2) + n^3$ then T(n) is equal to :- (T(n) denotes time complexity for size n)

- b) $\Theta(n \log_2 n)$
- c) $\Theta(n^2 \log_2 n)$
- d) Θ(n³)

Q2. Solve the recurrence relation to find T(n), T(n) = 4T(n/2) + n

- a) $\Theta(log_2n)$
- b) Θ(n²)
- c) $\Theta(n^2 \log_2 n)$
- d) None of these
- Q3. Solve $T(n) = 4T(n/2) + n^2$:
 - a) $\Theta(n^2)$
 - b) $\Theta(n^2 \log_2 n)$
 - c) ⊖(n log₂n)
 - d) None of these

Q4. Solve $T(n) = 2T(n/2) + n^3$

- a) $\Theta(n^3)$
- b) $\Theta(n^3 \log_2 n)$
- c) $\Theta(n \log_2 n)$
- d) None of these

Q5. Solve $T(n) = 16T(n/4) + n^2$:-

- a) ⊖(n log₂n)
- b) $\Theta(n^2 \log_2 n)$
- c) $\Theta(n^2)$
- d) None of these

Q6. Consider the following statements :-

- 1. An algorithm is a no. of steps to be performed to solve a problem.
- 2. An algorithm is a no. of steps as well as the implementation using any language to a given problem.
- 3. To a given problem there may be more than one Algorithm.

Which of the following is True?

- a) 1 is correct
- b) 2 is correct

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

- c) 1 and 3 are correct
- d) 2 and 3 are correct

Q7. Which one of the following is True ?

- 1. $a^*n = o(n^2)$ (small oh), a > 0
- 2. $a^*n^2 = O(n^2)$ (Big oh), a > 0
- 3. $a^*n^2 != o(n^2)$ (small oh), a > 0
- a) Only 1 and 2 are correct
- b) Only 1 is correct
- c) 1 and 3 are correct
- d) All are correct

Q8. $f(n) = 3n^2 + 4n + 2$

Which will be the exact value for f(n)

- a) $\Theta(n^2)$
- b) o(n²)
- c) O(n²)
- d) $\Omega(n^2)$

Q9. f(n) = O(g(n)) If and only if

- a) g(n) = O(f(n))
- b) $g(n) = \omega(f(n))$
- c) $g(n) = \Omega(f(n))$
- d) None of these

Q10. f(n) = o(g(n)) If and only if

- a) $g(n) = \Omega(f(n))$
- b) $g(n) = \omega(f(n))$
- c) Both (a) and (b)
- d) None of these
- Q11. T(n) = (n + 1) + T(n + 1). Then T(n) is equal to
 - a) o(n log₂n)
 - b) o(log₂n)
 - c) O(n²)
 - d) None of these

Q12. T(n) = T(2n/3) + 1 then T(n) is equal to

- a) $\Theta(\log_2 n)$
- b) $\Theta(n \log_2 n)$
- c) Θ(n²)

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center d) Θ(n)

- Q13. Which of the following is not correct ?
 - a) f(n) = O(f(n))
 - b) c * f(n) = O(f(n)) for a constant c
 - c) O(f(n) + g(n)) = o(g(n) + f(n))
 - d) $O[f(n)^2] = [O(f(n))]^2$

Q14. High level languages are not concerned with the computers but with

- a) Problems
- b) Machine code
- c) Assembler
- d) Compiler

Q15. The postfix expression for the infix expression (A + B * (C + D))/(F + D * E) is

- a) (AB+CD+*F)/D+E*
- b) (ABCD*+F)/(+DE*+)
- c) (A*B+CD)/F*DE++
- d) None of these

Q16. The time complexity for evaluating a postfix expression is

- a) O(n)
- b) O(n log₂n)
- c) O(log₂n)
- d) O(n²)

```
Q17. Preorder of A * (B + C)/D - G
```

- a) -*A/+BCDG
- b) *+AB/C-DG
- c) *A+BC/-DG
- d) None of these

```
Common data for Q 18. And Q 19.
```

void x (int A [], int n)

```
int i, j;
for (i = 0; i < n; i++)
```

{

```
j = n - 1;
while (j > i)
{
```


Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center swap (A[j], A[j-1]);

```
j--;
   }
}
```

}

Q18. What will be the time complexity of the above algorithm ?

- a) O(n)
- b) O(n²)
- c) $O(n \log_2 n)$
- d) O(n³)

Q19. If the array is in sorted order the time complexity will be

- a) $\Theta(n)$
- b) $O(n^2)$
- c) O(n log₂n)
- d) $O(log_2n)$

Q20. What will be the time complexity of the following algorithm ? long Fib(const unsigned int N)

```
If (N < = 1) return 1;
```

```
else return (Fib(n - 1) + Fib(n - 2));
```

```
}
```

{

- a) $O(n^2)$
- b) $O(n^3)$
- c) $O(n^2 \log_2 n)$
- d) O(cⁿ) where c is a constant

Answers :-

- 1. D
- 2. B
- 3. В
- 4. A
- 5. B
- 6. C
- 7. D
- 8. A

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

- 9. C
- 10. B
- 11. C
- 12. A
- 13. C
- 14. A
- 15. D
- 16. B
- 17. A
- 18. B
- 19. В
- 20. D
- 20. D